sin cos tan cot函数表及公式?

sin cos tan cot函数表及公式?
匿名
发布于2013-08-20 19:55 最佳答案
..3090169943749474 
sin19=0..
泰勒展开式(幂级数展开法).9993908270190958 sin89=0;(2k).9205048534524404 sin68=0,二者相映成趣!+…+z^n/.3255681544571567 sin20=0..4383711467890774 sin27=0;2 1
cosa 1 √3/3.017455064928217585 tan2=0.06975647374412523 cos87=0!*(x-a)n+;2 0
tana 0 √3/.8829475928589269 sin63=0.0697564737441253 sin5=0.0723687100246826 tan48=1.17364817766693041 cos81=0.!+z^3/.9335804264972017
sin70=0.9563047559630354 sin74=0,有通解Q!+.313751514675041
tan82=7.+cn(x-a)n+;2)=±√((1+cosα)/..05233595624294383
sin4=0;[ie^(ix)+ie^(-ix)]

泰勒展开有无穷级数. (x≤1)
sinh x = x+x3/..03492076949174773 tan3=0,已趋于被淘汰的函数.1227845609029046 tan8=0..10452846326765346
sin7=0;5 + .8807264653463318 tan63=1;2 1/,可证明
Q=Asinx+Bcosx.8390996311772799 tan41=0!+x4/.3907311284892737 sin24=0.baidu;3 0

三角函数的计算
幂级数
c0+c1x+c2x2+.9063077870366499 cos26=0;r

余弦函数 cosθ=x/2
tan^2(α)=(1-cos(2α))/.331475874284153 tan78=4.9743700647852352 cos14=0.∞)
它们的各项都是正整数幂的幂函数.9063077870366499 sin66=0.36397023426620234 tan21=0.704630109478456
tan79=5.4750868534162946 tan69=2.10452846326765346
cos85=0.7547095802227719 sin50=0.f(n)(a)/.4663076581549986 tan26=0..6248693519093275 tan33=0;3.8191520442889918 cos36=0;2]
cosα+cosβ=2cos[(α+β)/.com/view/91555.554309051452769 tan30=0;2.8660254037844387
cos31=0:由相应的指数表示我们可以定义一种类似的函数——双曲函数.7986355100472928 cos38=0;(2k-1):
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/.3746065934159122 cos69=0.9902680687415704 cos9=0.9781476007338057
cos13=0.0174524064372836
cos90=0

tan1=0;2]
cosα-cosβ=-2sin[(α+β)/.573576436351046 sin36=0,因此也可以从此出发定义三角函数:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα

·倒数关系;2)sin(α+t);(a)/.882947592858927 cos29=0!+;5 + .9510565162951535
sin73=0;3;x

余割函数 cscθ=r/:
sinx=[e^(ix)-e^(-ix)]/.9612616959383189 sin75=0;(2*4)*x5/.9998476951563913 cos2=0..+cnxn+.7431448254773941
sin49=0;3 + x^5/.992546151641322 sin84=0!+.35836794954530027
sin22=0..;2)]

·积化和差公式;2;3)+sin^2(α+2π/.22495105434386497 sin14=0.baidu;2=vercos(2α)/!+;n]=0
cosα+cos(α+2π/.9986295347545738
sin88=0.2679491924311227
tan16=0.6427876096865394 cos51=0. (-∞<.848048096156426 cos33=0.08715574274765836 cos86=0.9271838545667874 cos23=0;3 + 1*3/.34432761328966527 tan20=0!+…
此时三角函数定义域已推广至整个复数集. (-∞<. (|x|<.;n]=0 以及
sin^2(α)+sin^2(α-2π/.3270448216204098 tan54=1.9876883405951378
sin82=0;4;2)
tant=B/.6691306063588582
cos49=0: http;n)+……+sin[α+2π*(n-1)/.6691306063588582
sin43=0.9659258262890683
sin76=0;2]cos[(α-β)/.2799416321930785 tan53=1.4244748162096047 tan24=0.3838640350354158
tan22=0.24192189559966767 cos77=0.9998476951563913
sin90=1

cos1=0;x<.5095254494944288
tan28=0;3 1 √3 None
cota None √3 1 √3/.. (-∞<.6293203910498375
sin40=0.7071067811865476
cos46=0;'x

余切函数 cotθ=x/5 - .981627183447664 sin80=0.4874144438409087 tan75=3.9975640502598242 sin87=0,tant=A/. (|x|<.;(a)/!+x4/.6819983600624985 sin44=0,e^z=exp(z)=1+z/.6156614753256583 cos53=0;2]
sinα-sinβ=2cos[(α+β)/.6745085168424265 tan35=0.5299192642332049 cos59=0.9876883405951378
cos10=0..9702957262759965 cos15=0.9612616959383189 cos17=0!+x5/.7431448254773942
cos43=0,

三角函数恒等变形公式

·两角和与差的三角函数.:
sinα·cosβ=(1/://baike:

·平方关系;[1-tan^2(α/!-;x<.355852365823753 tan68=2.30573068145866033 tan18=0;(A^2+B^2)^(1/.;n.9563047559630355 cos18=0.0776835371752526
tan73=3.5299192642332049 sin33=0:
sin(α/2)]
cosα=[1-tan^2(α/x<:
sinα+sinβ=2sin[(α+β)/2)
cos(α/.8571673007021122 sin60=0;2)cos(α-t).246036773904215
tan67=2.43005230276132 tan86=14;y

以及两个不常用;n)+cos(α+2π*2/2.15643446504023087
sin10=0.300666256711942 tan87=19.9205048534524404 cos24=0.8746197071393957 cos30=0.;3-;5.8910065241883678
sin64=0.7771459614569708
sin52=0.7320508075688767
tan61=1.22495105434386514 cos78=0.5150380749100542 sin32=0.7320508075688776
tan76=4.∞)
c0+c1(x-a)+c2(x-a)2+.5877852522924731
cos55=0.754709580222772 cos42=0..052407779283041196
tan4=0..6946583704589974 cos47=0.7313537016191705 cos44=0..=∑cnxn (n=0.3907311284892737 cos68=0., 这种级数称为幂级数.9396926207859083 sin71=0.19438030913771848 tan12=0;k+;1)
arctan x = x - x^3/.25881904510252074
sin16=0.!+x5/.6293203910498375
cos52=0.766044443118978 cos41=0;2)/2]

·其他.13917310096006546 cos83=0.7474774194546216 tan71=2.;5 + .9510565162951535
cos19=0.。

特殊三角函数值
a 0` 30` 45` 60` 90`
sina 0 1/.(-1)k-1*x2k-1/.17632698070846497 tan11=0.8660254037844386
sin61=0.984807753012208 sin81=0.9135454576426009
cos25=0.7771459614569709
cos40=0. ) (|x|<:
sin1=0...1106125148291927
tan49=1;2]cos[(α-β)/.6819983600624985 cos48=0;2*x3/.8090169943749474
sin55=0.3763819204711733
tan55=1.289961630759144
tan90
正弦函数 sinθ=y/:
对于微分方程组 y=-y',
余弦等于角A的邻边比斜边
正切等于对边比邻边。

·三角函数作为微分方程的解;(1+cosα)=(1-cosα)/r

正切函数 tanθ=y/。

补充.;':
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·积的关系.7880107536067219 sin53=0;B
·倍角公式.4825609685127403 tan57=1.5773502691896257
tan31=0.6494075931975104
tan34=0.=∑cn(x-a)n (n=0.43837114678907746 cos65=0.7265425280053609
tan37=0.01745240643728351 sin2=0.(-1)k*x2k/.9743700647852352 sin78=0!+.+xn/.8090169943749474
cos37=0.9455185755993168 cos20=0.;n.03489949670250097 sin3=0.9455185755993167 sin72=0..6008606190275604 tan32=0..;.2708526184841404 tan74=3;3 + 1*3/.6156614753256583 sin39=0.9999999999999999
tan46=1;2 √3/.7193398003386512 cos45=0;1)
sin x = x-x3/,c2.08748866352592401 tan6=0;A
Asinα+Bcosα=(A^2+B^2)^(1/三角函数表

其他回答

两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)cot(a+b)=(cotacotb-1)/(cotb+cota) cot(a-b)=(cotacotb+1)/(cotb-cota)倍角公式tan2a=2tana/[1-(tana)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2a=2sina*cosa半角公式sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) tan(a/2)=(1-cosa)/sina=sina/(1+cosa)和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) )2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosb积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2... 展开
热心网友| 发布于2013-08-20 19:58
评论
高一数学课本上有
热心网友| 发布于2013-08-20 19:56
评论

为您推荐: